Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration.

نویسندگان

  • Naoya Ohmura
  • Norio Matsumoto
  • Kazuhiro Sasaki
  • Hiroshi Saiki
چکیده

Here we describe artificial help for the respiratory electron flow supporting anaerobic growth of Thiobacillus ferrooxidans through exogenous electrolysis. Flux between H(2) and a anode through cells was accomplished with electrochemical regeneration of iron. The electrochemical help resulted in a 12-fold increase in yield compared with the yield observed in its absence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans.

Acetate threshold concentrations were determined under chlororespiring and Fe(III)-reducing conditions for Anaeromyxobacter dehalogenans strain 2CP-C. The acetate threshold concentrations measured were 69 +/- 4, 19 +/- 8, and <1 nM for chlororespiration, amorphous Fe(III) reduction, and Fe(III) citrate reduction, respectively. Residual DeltaG values of -75.4 kJ/mol of electrons for chlororespir...

متن کامل

Anaerobic utilization of Fe(III)‐xenosiderophores among Bacteroides species and the distinct assimilation of Fe(III)‐ferrichrome by Bacteroides fragilis within the genus

In this study, we show that Bacteroides species utilize Fe(III)-xenosiderophores as the only source of exogenous iron to support growth under iron-limiting conditions in vitro anaerobically. Bacteroides fragilis was the only species able to utilize Fe(III)-ferrichrome while Bacteroides vulgatus ATCC 8482 and Bacteroides thetaiotaomicron VPI 5482 were able to utilize both Fe(III)-enterobactin an...

متن کامل

H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.

A modified pH 1.0 liquid redox sulfur recovery (LRSR) process, based on reactive absorption of H(2)S((g)) in an acidic (pH 1.0) iron solution ([Fe(III)] = 9-8 g L(-1), [Fe(II)] = 1-2 g L(-1)) and electrochemical regeneration of the Fe(III)/Fe(II) catalyst couple, is introduced. Fe(II) was oxidized in a flow-through electrolytic cell by Cl(2(aq)) formed on a Ti/RuO(2) anode. pH 1.0 was applied t...

متن کامل

Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH.

The influence of lithotrophic Fe(II)-oxidizing bacteria on patterns of ferric oxide deposition in opposing gradients of Fe(II) and O(2) was examined at submillimeter resolution by use of an O(2) microelectrode and diffusion microprobes for iron. In cultures inoculated with lithotrophic Fe(II)-oxidizing bacteria, the majority of Fe(III) deposition occurred below the depth of O(2) penetration. In...

متن کامل

Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium.

Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 1  شماره 

صفحات  -

تاریخ انتشار 2002